

SVR3DTM

水流雷达测速仪 SVR3D

用户手册 2021年10月6日版

目录

目录

关	于本手册	5
1.	安全信息	5
	<u> </u>	5
警	告	5
2.	收货检查	7
3.	入门	8
4.	组件	. 13
	RCL(回看)	. 13
	PWR(开关)	. 14
	MENU(菜单)	. 14
	时钟	. 17
	时钟AM/PM	. 17
	高速或低速运行	. 17
	电池电量	. 17
	日期	. 17
	等待或发射	. 17
	速度单位	. 18
	标准偏差值	. 18
	垂直余弦角	. 19
	瞬时速度值	. 19
	水流速度方向箭头	19

	平均速度值	19
	速度方向	20
	水流信号跟踪标记	20
	水流速度频谱显示区	20
	平均速度值	21
	速度方向	22
	水流速度谱图显示区	22
	平均速度值	23
5.	操作模式	24
6.	测量表面速度	30
7.	角度补偿	33
8.	通信端口	37
9.	性能提示	38
10.	保养、清洁和存放	44
11.	数据下载	45
12.	技术参数	50
a. 渚	去务要求	53
b. 常	常见问题解答(FAQ)	54
c. 伢	录修	56
	两年保修	56
	两年保修的例外情况	57
d 44	性修 退回流程	58

e. 如何订购其他产	눈묘	59
------------	----	----

欢迎选购

美国德卡托电子公司(Decatur Electronics, Inc.)产品

感谢选择我们的产品 SVR3D™,这是一种用于测量水面速度的雷达测速(SVR: Surface Velocity Radar)设备。SVR3D 对于测量高速水流和洪水情况,价值非凡,因为此时如果使用直接接触式测速仪,会对操作人员的安全构成威胁。

SVR3D 具有许多先进功能,如雷达枪对水面的垂直角度和水平角度进行余弦误差修正。SVR3D 还包含可选择的水平余弦调整功能,可用于当雷达枪的角度与水的流向不平行时。

如果对该产品性能感到满意,请向销售代表咨询其他产品,包括 Genesis™系列雷达测速仪、Onsite™系列雷达测速拖车、测速小车 和测速标志牌。

请试用任何一款产品,我们力争成为行业领军者!

——美国德卡托电子公司 (Decatur Electronics, Inc.) 管理层及 全体员工

关于本手册

本手册包含宝贵信息,可帮助用户设置、使用和维护雷达测速 仪,从而优化使用寿命,保持最佳性能。请通读本手册,并保 存好以备将来参考。

注意本手册的以下标识:

表示有关安全预防措施的警示信息。需

仔细阅读。

表示需注意的实用提示或预防措施。

1. 安全信息

用户应将所有售后需求反馈给制造商。

警告

• 内置电池组不可由用户自主维修。

警告

请勿将雷达枪放入水中,否则会导致损坏。SVR3D 仅

适用于从水面上测量流速。

- 自行拆开 SVR3D 会导致任何仍然有效的保修失 效。产品部件均不可由用户自主维修。
 - 请勿将 SVR3D 暴露在过度潮湿的环境中。切勿将设备浸 入水中。如果 SVR3D 意外落水,立即从水中取出,擦拭 并晾干。
 - 请勿将 SVR3D 掉落在坚硬的表面上,否则会导致损 坏。因掉落或滥用而损坏的设备,不在保修范围 内。

2. 收货检查

- 收到雷达测速仪后,请检查所有部件是否在运输或卸货过程中发生货运损坏。若有任何损坏,请拍照记录。
- 若有任何损坏,最好在司机在场时,立即通知货运公司。在 提单上记录损坏情况,并记录问题或损坏情况。
- 本产品包装应包括以下图片中的物品,以及本用户手册。

可拆卸的USB电源数据线

3. 入门

3.1 简介

SVR3D 是一款手持式水面速度雷达(SVR™)测速枪,专门用于测量水流表面的速度,非常适合在溪流和河流中使用。诸如"Recall"(回看)等功能,可让用户回顾之前的测量数据。其他功能可通过菜单选项进行选择。

图 3.1 SVR3D 总体介绍

雷达枪具有倾斜传感器系统,可在内部补偿测速枪与水面垂直 (纵倾)角的余弦角效应。无需手动设置倾斜传感器。

3.2 电池充电

SVR3D 包含内置可充电锂电池组。当首次收到雷达枪时,需在使用前,对电池进行第一次充电。电池充电后,若在3-4周内并未使用 SVR3D,则需在使用前,再次对电池进行充电,以获得完整的运行时间。要对电池进行首次充电,请遵循3.3中的步骤。

3.3 为电池充电

SVR3D 附带的USB电源线,用于为内置电池充电。将USB电源线,插入靠近扳机前端的USB端口。 USB端口可以任意方向插入。 若 SVR3D 关机并正在充电,则中间的开关灯会变成绿色,表示处于 充电状态。 一旦充满电,绿灯会熄灭。若 SVR3D 处于开机状态,则电池电量和充电状态会显示于显示屏的右上角。

图 3.3a 插入USB电源数据线

图 3.3b SVR3D 关机并充电时,开关按钮灯亮

电池充电图标

图 3.3c SVR3D 开机并充电时的电池电量和充电状态

在50°F(10°C)和113°F(45°C)之间的温度充电时,电池可获得最佳性能。在该温度范围之外充电,可能会导致电池寿命缩短或充电不完全。

3.4 电池运行时间

SVR3D 在两次充电之间可以运行的时间,取决于几个因素:电池组的新旧程度以及 SVR3D 的使用方式。通常,在正常使用情况下,充满电的 SVR3D 可在两次充电之间运行约一周。

3.4.1 自动关机

如果开机,但未触碰扳机或任何按钮,SVR3D 会在5分钟、10 分钟或15分钟后(取决于设置)自动关机,以节省电量。

3.5 更换内置电池组

内置电池组不可由用户自主维修或更换。只有工厂授权的服务中心,才能执行此项维修或更换。

3.6 连接USB电源数据线

插入 SVR3D 的USB电源数据线,为电池充电和为连续使用提供电源。 SVR3D 的USB端口位于扳机旁边。 将USB电源数据线插入 SVR3D,并插入合适的电源(笔记本电脑、台式电脑、USB充电设备等),即使在操作过程中,SVR3D也会尝试为电池充电。

3.7 控制面板功能

SVR3D 的操作,是由三个按钮和一个发射扳机进行控制。

4. 组件

4.1 控制按钮

图 4.1a 面板(显示屏和控制按钮)

从左至右查看控制按钮,按钮具有以下功能:

RCL(回看)

RCL(回看)按钮,可进入回看模式,操作员可以查看之前测量的速度列表。若满足以下条件,则可进入回看模式:

- 设备未进行传输
- 设备未进行测量

通过回看模式,操作人员可以回看 SVR3D 计算的最后一次测量速度。按下RCL(回看)按钮后,会显示包含8个最新测量速度的列表,最新速度显示在底部,第8新的速度显示在顶部。 除速度外,还保存时间和日期。 每按一次扳机,就会有一个新的数据显示在顶部,并将列表向下移动一级。 再次按下扳机,将继续把较早保存的数据移到视图中。再次按下RCL(回看)按钮,可退出回看

模式。

PWR(开关)

PWR(开关)按钮(中间的按钮),可以开启和关闭雷达测速仪。当开机时,SVR3D 会进入开机循环,显示测试屏幕,回看最后保存的操作参数,进入上次关机前的最后操作模式,最终准备好雷达枪以进行测量。 开机测试屏幕如图4.1a所示,用户可以检查屏幕和背光灯的功能。 要关闭设备,用户必须长按开关按钮至少2秒。 当看到"Powering Down"(关闭中)和"Release Power Button"(松开开关)的指示时,必须松开开关按钮,设备将关机。 如果在操作过程中改变了任何设置或操作参数,SVR3D 会将这些设置,保存到非易失性存储器中。

MENU(菜单)

MENU(菜单)按钮,可以进入菜单界面,此时用户可以更改某些操作设置。 重复按MENU(菜单)按钮,可查看不同功能。 当选中某项功能(绿色)时,按下扳机,用户可在该特定功能项下的子菜单中,更改参数。

图 4.1b

按下MENU(菜单)按钮后的菜单界面。

4.2 屏幕显示

4.2.1 SVR3D 显示屏

SVR3D 采用日光可视的彩色显示屏。 根据不同的模式,屏幕可以显示各种信息,从电子数值到频谱显示和频谱图显示。 屏幕亮度自动控制,但也可根据需要,通过菜单设置来手动调整亮度。(请参阅"LCD亮度"菜单设置)

4.2.2 SVR3D 开机后的屏显

首次开机时,SVR3D 会执行屏显检查,以便用户能够验证屏幕功能是否正常。图 4.1a

4.2.3 SVR3D 所有模式的常见图标

SVR3D 具有多种操作模式,可在测量周期内,为操作员提供各种水面速度信息。常见的图标包括:

图 4.2.3 所有 SVR3D 操作模式的常见图标

时钟

SVR3D 显示当前时间(若已启用)

时钟AM/PM

SVR3D 显示当前时间的上午或下午。(如果时钟已启用且只适用于12小时模式)

高速或低速运行

如果雷达测速仪设定为低速运行,SVR3D显示"Lo"。 如果雷达测速仪设定为高速运行,SVR3D显示"Hi"。

电池电量

SVR3D 以百分比和电池图标的形式,显示当前电池的充电状态。随着电池电量的减少,电池和百分比会改变颜色(从绿色变为红色)。 当电池电压达到0%时,会显示"Low Bat"(电量过低)信息。

日期

SVR3D显示当前日期(若已启用)

等待或发射

SVR3D 显示"Hd",表示发射器处于等待状态(不发射)。 SVR3D 显示"Xt",表示发射器已开启。

速度单位

SVR3D显示fps,表示标准单位"英尺/秒"。 SVR3D显示m/s,表示标准单位"米/秒"。

4.2.4

若 SVR3D 设置为电子显示(电子显示瞬时速度和平均速度),如图所示:

图 4.2.4 带有状态图标的电子显示。

标准偏差值

SVR3D 显示当前的标准偏差值。

垂直余弦角

SVR3D 显示当前倾斜角度(与水面的余弦角)。

瞬时速度值

SVR3D 显示当前瞬时速度值(非平均值)。

水流速度方向箭头

SVR3D 显示瞬时速度和平均速度的水流方向。

平均速度值

SVR3D 显示当前平均速度值。

4.2.5

若 SVR3D 设置为频谱显示,如图所示:

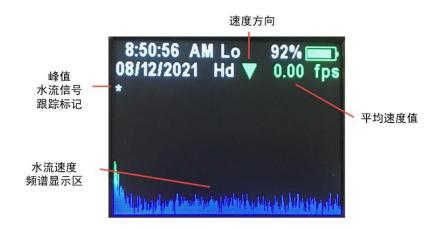


图 4.2.5 模式1 频谱显示,带有状态图标。

速度方向

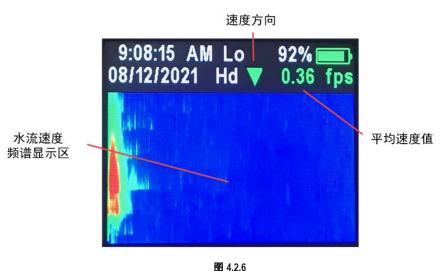
SVR3D 会根据水流的方向,显示箭头图标。向下的箭头(如图 所示)表示检测到的水流是在前进方向。向上的箭头表示检测到的水 流是在后退方向。

水流信号跟踪标记

SVR3D 会用一个标记,来突出检测到的峰值流速,该标记会追踪雷达测量区域内的最强信号。该标记会实时跟踪最强的水流回流。

水流速度频谱显示区

SVR3D 会通过显示水流的所有多普勒回波频率,来显示水流的频谱。所显示水流速度从左到右递增,信号强度从下到上递增。信号


强度采用颜色编码,蓝色表示多普勒回波最弱,红色表示回波最强。

平均速度值

SVR3D 显示当前平均速度值。

4.2.6

若 SVR3D 设置为频谱图显示(Spectrogram display),如图所示:

模式2频谱图显示,带有状态图标。

速度方向

SVR3D 会根据水流的方向,显示箭头图标。向下的箭头(如图 所示)表示检测到的水流是在前进方向。向上的箭头表示检测到的水 流是在后退方向。

水流速度谱图显示区

SVR3D 会通过显示随时间变化的水流的所有多普勒回波频率,来显示回流的频谱显示。这类似于频谱显示,但显示的不是垂直方向上的信号强度,而是该方向上随时间变化的频谱。 如果检测到的水流是在前进方向,显示屏将从上到下填充,相反,如果检测到的水流是在后退方向,显示屏将从下到上填充。与频谱显示一样,信号强度采用颜色编码,蓝色表示多普勒回波最弱,红色表示回波最强。

平均速度值

SVR3D 显示当前平均速度值。

4.3 发射扳机

当按下发射扳机时,雷达枪会发射和接收电波能量。要测量流速,按下扳机然后松开。即使现在松开了扳机,雷达枪也会继续发射信号。请参阅第6.2节"进行测量"。

4.4 选配装置

该雷达枪设计用于手持操作。用户也可以选择使用转接器连接在集成导轨上,再将转接器安装到标准的相机三脚架上。

5. 操作模式

SVR3D 控制面板上的MENU(菜单)和SEL(选择)按钮,可用于查 看和更改设置。雷达枪在关机时会记住最后一次的设置,并在开机 时使用该设置。

5.1 主菜单

用户可以使用 SVR3D 附带的出厂默认设置,也可以选择自己的设置。要选择设置,请在查看主菜单的同时反复按下MENU(菜单)按钮,直到要更改的设置以绿色突出显示。此时按下扳机,进入子菜单。根据不同的项目,按下扳机或MENU按钮,以进入该设置

的子菜单选项(见下文详细操作)。在子菜单项上再次按下扳机, 可以调整该设置。

主菜单设置: (使用MENU键进行设置)

(1) 模式(使用扳机进行设置)

a. 子菜单设置:

- i. 仅前进方向
- ii. 仅后退方向
- iii. 全方向

前进方向 后退方向

(2) 灵敏度(使用扳机进行设置)

a. 子菜单设置:

- i. 1级为灵敏度最低
- ii. 2级
- iii. 3级
- iv. 4级

v. 5级为灵敏度最高

灵敏度最低

灵敏度最高

- (3) 显示模式 电子显示模式 (使用扳机进行设置)
 - a. 子菜单设置
 - i. INST/AVG(瞬时速度/平均速度)
 - ii. 频谱
 - iii. 3D频谱或频谱图

电子显示

频谱

3D频谱

(4) 常规设置(使用扳机进入子菜单)

a. 子菜单设置(使用MENU键移动选项,然后使

用扳机选择新设置)

i. 低速/高速运行:Low/High SPEED

ii. 水平余弦设置: HCOS (0度至60度,

增量为5度)

iii. 自动调光:1-8(8=最大亮度)

iv. 提示音:开或关

v. 单位:fps或m/s

vi. 串行通信: COM X

vii. 自动关机:关闭、5分钟、10分钟、

15分钟

viii. 退出

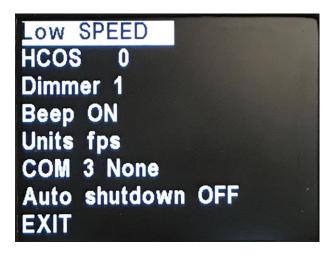


图 5.1a 常规设置的子菜单选项

(5) 时钟设置(使用扳机进入子菜单)

a. 子菜单设置

i. 时钟显示:开或关

ii. 年份选择

iii. 月份选择:1月至12月

iv. 日期选择:1至31

v. 格式选择:12小时制或24小时制

vi. 时钟选择:1至12或1至24

vii. 分钟选择:0至59

viii. 退出

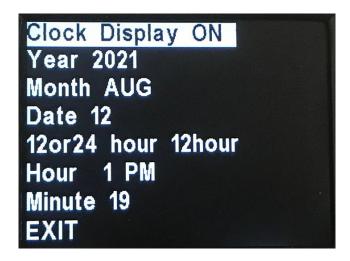


图 5.1b 时钟设置的子菜单选项

(6) 退出

按下扳机,退出主菜单

6. 测量表面速度

6.1 简介

SVR3D 可以使用雷达探测前进和后退的水流速度,并具有内置的定向滤波器,以帮助过滤掉随机噪声和干扰源。 重点是要将SVR3D 置于与水流方向相匹配的正确方向感应模式。如果水正流向雷达枪,请确保雷达枪处于前进方向感应模式。 反之,如果水正在远离雷达枪,则将雷达枪置于后退模式。 如果希望SVR3D 自动检测方向,则将雷达设置为全方向模式,雷达将自动检测水流方向,并显示相应的方向箭头。

在开始测量速度时,请将 SVR3D 雷达枪对准水面,按下扳机然后松开(不需要持续按动扳机)。 根据不同的操作模式,SVR3D 将开始对多普勒频移水面进行采样。 采样得到保存、取其平均值并计算标准偏差,以确定速度何时转换为稳定的读数。

6.2 进行测量

- 按下开关按钮,开启 SVR3D。一旦显示分段检查完成,雷达 枪即可使用。
- 如前所述,将 SVR3D 设置为前进或后退模式,如果用户希望 雷达自动检测方向,则设置为全方向。
- 将 SVR3D 设置为最高灵敏度。
- 根据当前水情,设置适当的高速/低速范围。
- 按下扳机然后松开。SVR3D将启动测量过程。最初计算的速度会变化,但会开始收敛到一个稳定值。如果雷达枪处于电子显示状态(瞬时速度和平均速度模式),显示屏上会显示

SD(标准偏差)值。SD值将从一个高值开始,然后开始向零下降。这表明雷达枪正在收敛到标称速度或平均速度。雷达枪会继续在绿色显示区显示平均值。一旦SD值达到某个阈值,雷达枪会停止测量并完成测量周期。一旦完成,SVR3D会关闭雷达发射器,并在绿色平均显示窗口中,保留最终测量的速度。SVR3D还会把该测量读数保存在非易失性存储器中,以便以后回看。若SVR3D处于频谱模式或3D频谱模式,测量过程保持不变,但不显示SD值。

注意

如果在测量间隔期间,波动超过0.5 f/s至0.8 f/s(0.15 m/s至0.24 m/s),建议复核最终值。一致的读数会证实结果的有效性,所以建议进行多次测量。

因为 SVR3D 测量来自水面的多普勒效应,所以 SVR3D 需要一定的回波能量。(请参阅第9.1节"雷达枪的工作原理")表面的颗粒物和/或漂浮物(种子)以及水流的湍急程度,提供了这种效应。

SVR3D 可轻松测量出颗粒物在高流速条件下的移动速度。这就提供了表面流速的准确性。对于速度超过1f/s至2 f/s(0.30 m/s至0.60 m/s)的情况下,漂浮物和颗粒物为雷达枪提供了充足的回波信号,以便测量。水流的湍急程度也能提供良好的回波信号。因为波纹和横流在各个方向上产生速度。在测量过程中,

SVR3D 会读取所有的速度,并根据返回到天线的信号量,将其平均为一个结果值。

6.3 回看之前的读数

SVR3D 最多可存储32K的读数。 要回看之前测量的速度,请按下 RCL(回看)按钮然后松开。 屏幕上将显示最近8次测量的读数, 最新的在底部(最旧的在顶部)。图 6.3a 为一个示例。

> 0.36 09:04 AM 08/12/21 1.37 03:04 PM 08/12/21 0.04 03:04 PM 08/12/21 0.93 03:04 PM 08/12/21 0.01 03:04 PM 08/12/21 0.23 03:05 PM 08/12/21 0.01 03:05 PM 08/12/21 0.07 03:05 PM 08/12/21

图 6.3a 屏幕上显示所回看的速度,最新的 读数位于底部。

要回看其他读数,请按扳机。 每次按扳机,就会在屏幕的顶部循环显示一个较早保存的值,这会让所有的值向下移动。 再次按下RCL(回看)按钮,会退出回看屏幕。

有关下载和保存已存储读数的信息,请参阅第11节。

注意

SVR3D 会将时间、日期以及每个速度,立即保存 到非易失性存储器中。第11节提供了有关下载和 保存已存储读数的信息。

7. 角度补偿

由于水面速度读数必须从一个固定、干燥的位置(通常是河岸或桥梁)采集,因此读数必然会受到雷达波束和水流方向之间 角度的影响(请参阅"角度干扰"一节)。

SVR3D 对这种影响进行了补偿,称为余弦角补偿,在水平方向使用可设置的偏航校正,在垂直方向使用内部自动倾斜传感器。

7.1 垂直角度补偿

图 7.1 SVR3D 以60°角向下倾

SVR3D 的内部倾斜传感器,会自动补偿雷达枪口对准目标的垂直 角度,最高可达60°。无需手动设置倾斜传感器。但是,在进行 速度测量时,必须将雷达枪保持在恒定的垂直角度。

当纵倾角度超过60°时,SVR3D会显示"tilt"(倾斜)。当显示屏出现"tilt"(倾斜)时,雷达枪不记录速度测量值。若要继续进行测量,请将雷达枪倾斜到小于60°的角度,直到"tilt"(倾斜)显示消失。

只有电子显示(瞬时速度和平均速度)模式会显示垂直余弦角。 其他模式,频谱模式和频谱图模式则不会显示。

图 7.1 当垂直(纵倾)角度超过60°时的显示

垂直余弦角无需校准。

7.2 水平角度补偿

雷达枪以大于0°的水平角对准目标会产生余弦误差,从而导致显示虚假读数(小于9°的角度表示误差小于1%)。为了消除或大大减少这种误差,请将"水平角度补偿"选项,设置为打算将雷达枪对准目标的角度。然后在整个速度测量过程中,对准并保持在这个设定角度。

若要设置"水平角度补偿"选项,请按下MENU(菜单)按钮,然后再次按下该按钮,直到突出显示"设置"(即突出显示齿轮图标)。按下扳机,进入子菜单。再次按下MENU(菜单)键向下移动设置列表,直到突出显示HCOS行。按下扳机,滚动浏览可选择的度数。

图 7.2 水平角度设置为5°

每次按下扳机,会出现0、5、10、15、20、25、30、 35、40、45、50、55或60,(超过60度时会重置为0),这代表打 算持枪的水平角度。

现在,雷达枪设置在所选中的角度,并保持在这个模式,直到做出更改。下次进入此菜单选项时,将显示该设置。

设置完成后,再次使用MENU(菜单)按钮向下滚动到EXIT(退出)选项,并按下扳机退出"设置"。

8. 通信端口

SVR3D 在扳机旁边有一个USB通信端口。当有新版本时,可以使用该端口来升级软件,平时用于接收测量数据。

图8显示端口的位置。

图 8 端口的位置。

通信端口发送测量数据,具有以下特征(8:n:1):

一(1)个起始位,八(8)个数据位,无奇偶性,一(1)个 停止位。以19200波特传输,以ASCII符号传输数据。

Sr1协议为SSS.S<cr>(在测量周期内每秒发送一次)。

9. 性能提示

了解潜在的雷达枪干扰和发生干扰时的应对措施,可以大大提 高雷达枪的性能。

9.1 雷达枪的工作原理

速度的确定,始于雷达枪发射电波能量束(无线电波),并将 其指向前进(或后退)的目标。当该波束击中目标时,该波束 的少量能量反射回雷达装置中的天线。反射信号频率偏移量与 目标速度成比例。这就是所谓的多普勒效应(Doppler Effect)。 然后,雷达设备根据发射和反射信号之间的频率差,来确定目 标的速度。

当天线发射无线电波束时,该波束在目标区域形成一个椭圆图案。 波束的大小取决于天线和目标之间的距离。水平波束宽度为12°。 距离天线越远,探测区域越大。

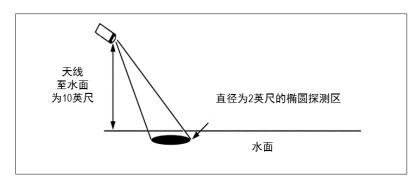


图 9.1 雷达波束探测区

当用 SVR3D 指向距离水面约10英尺(3米)的地方时,可测量出直径为2英尺(61厘米)的椭圆波束图案。在测量河流宽度时,请记住这一点。要进行多次测量,以完全覆盖水流的整个宽度。

9.2 干扰源和补救措施

当正确安装和操作时,多普勒雷达技术是非常准确和可靠的。 但是,环境的变化会造成某些影响,从而导致虚假速度(不稳 定、异常低或异常高)。虚假速度的迹象可能包括以下特征:

- 当天线的工作范围内没有目标时,却显示读数
- 进入操作范围的目标覆盖了干扰信号,导致显示速度 突然改变
- 干扰是不规则的,不能提供有效的目标速度

9.2.1 角度干扰(余弦效应)

余弦效应会导致所显示的速度低于实际水面速度。当目标的路径(水流方向)与雷达枪的天线不平行,就会出现这种情况。 当天线和目标的行进方向之间的水平(偏航)角增加时,显示的速度就会下降。理想情况下,最佳角度为零(0°)。

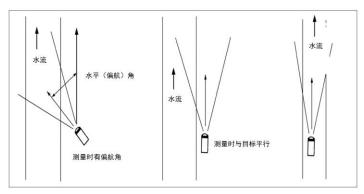


图 9.2.1 当目标的路径与雷达天线不平行时,就会出现角度误差。

小角度(小于10°)对精确度影响不大。随着角度的增加,显示的目标速度会错误地降低,如下表9.2.1所示。在90°时,目标速度为0,这极不正确。

若未在菜单中设置"水平角度补偿"选项,就会看到类似这样的数字。(关于如何设置,请参阅第7.2节"水平角度补偿"。)

水平角度

实际速	0	1°	3°	5°	10°	15°	20°	30°	45°	60°	90°
度,单 位f/s	显示速度:										
3	3 .0	3 .0	3 .0	3 .0	3 .0	2 .9	2 .8	2 .6	2 .1	1.5	0.0
5	5 .0	5 .0	5 .0	5 .0	4 .9	4 .8	4 .7	4 .3	3 .5	2 .5	0.0
7	7 .0	7 .0	7 .0	7 .0	6 .9	6.8	6.6	6 .1	4 .9	3 .5	0.0
9	9 .0	9 .0	9 .0	9 .0	8 .9	8 .7	8 .5	7 .8	6 .4	4 .5	0.0
11	11 .0	11 .0	11 .0	11 .0	10 .8	10 .6	10 .3	9 .5	7 .8	5 .5	0.0
13	13 .0	13 .0	13 .0	13 .0	12 .8	12 .6	12 .2	11 .3	9 .2	6 .5	0.0
15	15 .0	15 .0	15 .0	14 .9	14 .8	14 .5	14 .1	13 .0	10 .6	7 .5	0.0
17	17 .0	17 .0	17 .0	16 .9	16 .7	16 .4	16 .0	14 .7	12 .0	8 .5	0.0
19	19 .0	19 .0	19 .0	18 .9	18 .7	18 .4	17 .9	16 .5	13 .4	9 .5	0.0
21	21 .0	21 .0	21 .0	20 .9	20 .7	20 .3	19 .7	18 .2	14 .8	10 .5	0.0

23	23 .0	23 .0	23 .0	22 .9	22 .7	22 .2	21 .6	19 .9	16 .3	11 .5	0.0
25	25 .0	25 .0	25 .0	24 .9	24 .6	24 .1	23 .5	21 .7	17 .7	12 .5	0.0

表 9.2.1 天线与目标产生角度时的实际速度和显示速度

表9.2.1显示了实际速度(左栏)和未调整雷达枪水平(偏航)角度所显示的速度(右栏)。注意,对于小于10°的角度,余弦误差对速度的影响最小。另外,请注意,该表仅反映水平角度的余弦误差。当在测量中引入水平(偏航)角度和垂直(纵倾)角度时,这两个角度都会影响最终计算的显示速度。

注意

倾斜传感器会自动补偿小于60°的垂直(纵倾)角。

9.2.2 电磁干扰(EMI)

电机运行时会产生电磁干扰。电磁干扰可能会造成虚假(不稳定和异常低或异常高)的速度。要纠正干扰,只需关闭干扰源。

9.2.3 回波干扰

当将雷达光束指向计算机屏幕、路灯和其他电子设备时,可能 会显示出虚假的(不稳定和异常低或异常高)速度。要纠正干 扰,请将雷达枪的天线移离干扰源。

9.2.4 无线电频率干扰 (RFI)

雷达枪可以无意中把无线电能量处理成多普勒速度,包括来自警用无线电、机场雷达、微波发射塔、CB无线电发射器和AM/FM发射塔的能量。发生此类干扰,雷达枪肯定是在非常靠近无线电发射器的位置操作。

9.2.5 扫描

SVR3D 设计用于连接到固体支架,或手持在稳定位置时使用。移

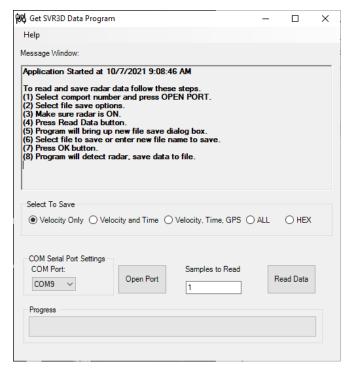
动或"扫描"天线经过静止的物体,会导致系统检测到运动。请正确 使用雷达枪,通过扫描是无法获得速度读数的。

9.2.6 环境因素: 风、雨、雪

风在水面上会产生波浪,从而导致与水流主要方向不同的运动。 在高速水流中,这种影响最小或不存在,不影响测量。

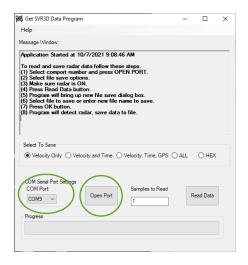
但是,在低速水流中,如低于1f/s至2 f/s (0.30 m/s至0.60 m/s)的条件下,风的影响占主导地位,因此测量可能无法反映实际的速度。在有风的情况下,请将 SVR3D 放置在不受风影响,或对水面干扰最小的目标区域,如桥下或有遮挡的区域。

雨雪会影响测量的准确性。在缓慢的水流条件下,雨或雪的垂直 速度影响占主导地位。雨滴从天线的测量平面前经过,以及雨滴 与水面接触产生的水面湍急程度,也会造成这种影响。然而,在 快速水流的条件下,这些影响是最小的。最主要的影响,是地表 水流沿着主要明渠的方向流动。


在这些条件下,请在受雨雪影响较小的桥梁、建筑物或有遮挡的 地方进行测量。请在主河道流量占主导地位的地方进行测量。这 就会消除环境因素可能造成的误差。

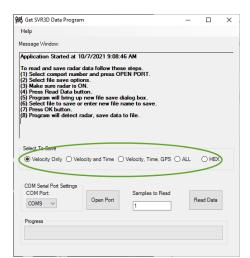
10. 保养、清洁和存放

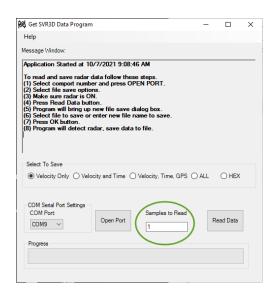
- 避免将食物、饮料和其他液体和物质,溅在雷达设备上。
- 当不使用或运输设备时,请将其存放在原包装内。
- 若要清洁雷达设备,请使用不含清洁液的柔软清洁布。

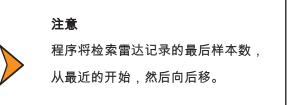

11. 数据下载

- SVR3D保存的速度信息,可通过一个名为"Get Radar Data"(获取雷达数据) 的特殊程序下载和保存。
- 有关此软件,请联系当地的Decatur代表。
- 运行程序后,将看到以下界面:

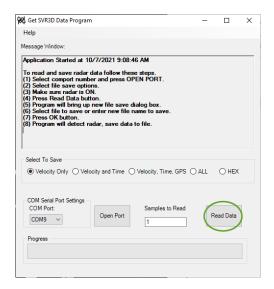
• 按照以下步骤下载数据


11.1 选择可用的端口#,点击"open port"(打开端口)。


11.2 选择所需的输出数据


选择包括

- 11.2.1 仅速度
- 11.2.2 速度、时间/日期
- 11.2.3 速度、时间/日期和GPS数据
- 11.2.4 所有雷达元数据
- 11.2.5 用于工程/验证的十六进制输出


11.3 选择需要检索和存储的样本数。 注:最小值为1,最大值为32,000。

11.4 确认SVR3D雷达已打开。(通电并运行)

11.5 点击"Read Data"(读取数据)。

11.6 出现以下保存数据页面。输入要保存数据的文件名,然后点击 "Save"(保存)。程序将把数据保存为文本文件。

File name:	Data.txt	~
Save as type:	txt files (*.txt)	~
↑ Hide Folders	Save	Cancel

现在程序将与SVR3D进行通信,会显示数据检索和保存的进度。

11.7 数据保存文件结构

11.7.1 仅保存速度。 该文件由文本格式的速度数据组成,每个样本位于同一行上。

DD.DD(LF)DD.DD是"仅保存速度"的数据。 最大保存数据为99.99

示例:0.17

11.7.2 速度、时间/日期

DD.DD, TIME DATE (LF) DD.DD 是保存的速度数据。 TIME DATE是保存的时间/日期戳。 最大保存数据为99.99。 逗号用于分隔数据字段。

示例: 0.17, 01:23PM 10/06/2021

11.7.3 速度、时间/日期、GPS

DD.DD, TIME DATE (LF), GPS DATA (LF) DD.DD是保存的速度数据。 TIME DATE是保存的时间/日期戳。 最大保存数据为99.99。 GPS纬度数据保存为 NEMA ddmm.mmm格式,GPS经度数据保存为NEMA dddmm.mmm格式。逗号用于分隔数据字段。

示例: 0.17, 01:23PM 10/06/2021, 0.0, S 0.0, W

11.7.4 所有数据

采样期间保存的所有SVR3D元数据。

示例:B, 0, 1, 0.17, 0, 54, 01:23pm 10/06/2021, 1.0, 0.0,S 0.0,W, 248, F8C22850

逗号用于分隔数据字段。有关更多信息,请联系Decatur。

11.7.5 十六进制格式

采样期间保存的所有SVR3D数据。 数据以十六进制格式表示。

示例:0xB4011036 0x23C11810 0x2100000A 0x00000000 0x00000000 0x00000000 0xF8C22850

空格用于分隔数据字段。有关更多信息,请联系Decatur。

12. 技术参数

12.1 测量参数	
低速最小速度	0.3 fps (0.1 m/s)
低速最大速度	27 fps (8.5 m/s)
高速最小速度	0.65 fps (0 .2 m/s)
高速最大速度	108 fps (33 m/s)
测量精度	1%的读数

测量单位可以设置为以英尺/秒(fps)或米/秒(m/s)。

12.2 出厂默认设置				
单位	m/s (米/秒)			
水平余弦	0°			
敏感度	最大值			

12.3 天线参数

类型	Ka波段			
标称发射频率	35.5 GHz			
标称水平波束宽度	12°			
偏振	圆形			
标称电波输出功率	12 mW			
最大孔径功率密度	<1 mW/cm ²			

12.4 环境参数					
环境温度	-22°F至+158°F,-30°C至+70°C				
最大湿度	在37°C (99°F)非凝结的情况				
	下,相对湿度为90%。				
防水性符合《国际稳健性标准》	IEC 529:1989和《欧共体				
标准》EN 60529					
分类IP55 .12°。					

12.5 电压参数	
电源电压范围	6.4至8.4 VDC
电源	4700 mAh锂离子电池
低电压阈值	6.4 VDC(电池)

12.6 功耗参数	
运行时间	连续使用10小时,间歇使用26小时。
充电时间	5小时
USB要求	兼容BC1.2

a. 法务要求

13. 文件

美国联邦通信委员会

华盛顿哥伦比亚特区,邮编:20554

b. 常见问题解答(FAQ)

问:表面速度测量读数比上次的读数高得多,怎么办?

答:如果水面光滑,湍急度很小或没有湍急度,SV3D 可能接收不 到足够的回波雷达能量。请尝试在离水面较近的地方,或在水 面有湍流、粗糙度、甚至漂浮物的区域进行测量。

问:我刚刚完成了测量,然后去到河流的另一处地方。现在测量 结果似乎有偏差,怎么办?

答:请检查以确保已经调整了水平(倾斜)角度补偿。在大流量 条件下,不正确或不恰当的角度输入,会导致速度读数出现显 著差异。

问:水面上有很好的湍急度和波浪,但雷达枪的读数似乎还是比预期的高和/或低得多,怎么办?

答:在进行测量时,请确保离水面不要太远。这种距离有时很难确定,因为测量值是返回到雷达枪的信号量的函数。返回的信号直接与距水面的距离和水面湍急度有关。当雷达枪尽可能靠近水面时,即使在非常低的流速下,也能进行最佳测量。用户需要对准同一地点进行多次测量。尽量减少测量中的水平(偏航)角度。此外,在不同的垂直(纵倾)角度进行几次测量,以确定读数的一致性。请确保在测量时稳定地握住雷达枪,并且只有一个角度。

问:我尝试测量流速,速度应该是低于2 fps(0.60 m/s),但

读数显示较高,怎么办?

答:请检查水面上出现的风效应。风会影响低速测量,例如低于2 fps (0.60 m/s)。如果可能,请在两个方向进行测量,一个是流向雷达枪的方向,一个是远离雷达枪的方向。尽量指向同一点进行测量。

问:我在洪水条件下进行测量。水流很快,湍急不平,有很多碎屑 和漂浮物。此时雷达枪能测得准吗?

答:能,表面有漂浮物的湍流水,为雷达枪提供了良好的返回信号。请注意,在这些条件下,雷达枪可以读取多个方向上产生的许多不同速度。雷达枪测量所有这些速度,并提供一个平均速度值。

问:在进行测量时,数值每5秒就会发生变化,这是为什么?

答:雷达枪以60秒的时间间隔测量速度。

当第一个测量值出现在显示屏时,这是雷达枪对表面速度进行多次采样的结果。(雷达枪将数值存放在一种"先进先出"的内存缓冲区)当雷达枪继续取样时,会抛弃旧的速度值并以新的样本取代,然后再取平均值。采样过程在这60秒内每5秒进行一次。这是因为水的水力会改变。雷达对表层水进行采样,并提供10个表层速度的平均值,每个值在5秒钟内采样。60秒后,雷达枪将十个值相加求平均值,以提供最终速度值。

问:当进行测量时,读数似乎从高速到低速再到高速。这是为什么?

答:测量时,请确保拿稳雷达枪。

用于补偿速度垂直(纵倾)余弦误差的倾斜传感器非常敏感。 雷达枪的振动或突然移动,会导致错误的角度读数。

c. 保修

两年保修

美国德卡托电子公司(Decatur Electronics, Inc.)保证雷达枪在工艺和材料上无缺陷,并在规定范围内运行两年。在此期间,若Decatur Electronics 发现任何部件(不包括电池)有缺陷,将自行选择维修或更换,用户不必承担任何费用,前提是将设备送回Decatur授权的保修服务中心。

零件和工艺的全面保修,不包括正常磨损、挤压、跌落、火灾、冲击、浸泡、螺丝过紧或未经授权的人员试图维修或改装所造成的损坏。

对于维修,只需将设备(预付运费)直接退回Decatur授权的保修服务中心。请参阅附录d"维修退回流程"。

两年保修的例外情况

如果是根据特殊购买计划(如州购买合同等)购买了该装置,则上述保修可能不适用。有关相应的保修条款,请参阅购买计划合同或联系 Decatur Electronics。

若想延长保修期,请联系销售代表,以了解不同选项。

d. 维修退回流程

若有疑问、需要快速诊断问题,或需要退回设备或部件:

- 请拨打 800 .428 .4315 致电 Decatur Electronics客服。
- 请向客服解释所遇到的问题。
- 根据用户提供的信息,客服也许能够提供帮助,或者可能要 向服务提供商进行咨询。

对于保修项目,Decatur Electronics 将支付运费(最多10美元),用于将设备 从服务提供商处运到客户手中。

请注意,对于任何超过10美元的运费(若要求特快专递或次日空运),将收取额外费用。

如果用户被转介给服务提供商,并且设备在保修期内,那么一旦 收到设备,服务提供商将检查问题。一旦诊断出问题,服务提供 商将修复产品并将其返还给用户。

如果用户被转介给服务提供商,并且设备不在保修期内,那么我们建议用户与服务提供商沟通所遇到的问题,并确定是否需要维修估价。一旦收到产品,服务供应商将检查问题,在进行任何维修工作之前,用户会收到一份费用估算单。收到估价后,用户可从以下选项中进行选择:

- 1.批准估价并进行维修。
- 2.拒绝估价,支付估价费和送返运费。
- 3.与服务提供商讨论其他选项。

如果产品在保修期内,将自动获得维修并寄回给用户。

e. 如何订购其他产品

用户可为 SVR3D(若有)订购升级软件,购买便携箱和三脚架。要查看产品说明或订购产品,请访问 Decatur Electronics 官网 www.DecatureElectronics.com 或致电销售办公室800.428.4315。

www.DecaturElectronics.com 800 .428 .4315